MEASURING DECOMPOSITION USING SODA LIME DATA FORM 3: SAMPLES

Complete this form for each soil sample. Name(s) Today's date _____ Soil sampling ID number ______ Sampling date ______ Soil sampling location _____ Type of area sampled (e.g., forest, schoolyard) _____ Soil description Date and time soda lime incubation started Date and time soda lime incubation ended _____ Total # days incubation (should be 2 days) Protocol 4c, Part 2. Prepare soil samples Before incubation Weight of container (without lid) (G) = _____ g Weight of container (without lid) and soil (H) _ ____ g = **H** - **G** = _____ 9 Total soil wt (I) Protocol 4c, Part 3. Prepare soda lime Before incubation Weight of petri dish bottom = _____ g Weight of dish and soda lime before drying = _____ g Weight of dish and soda lime after drying (J) = _____ g Protocol 4c, Part 5. Calculate the amount of CO, produced After incubation and redrying of the soda lime Weight of dish and soda lime = _____ g Weight of dish and soda lime after redrying (K) ____ g _ ___ = **K** - **J** = _____ 9 Sample soda lime wt gain (L)

MEASURING DECOMPOSITION USING SODA LIME DATA FORM 3: SAMPLES (continued)

Calculating the rate of CO₂ production

1. Calculate the corrected weight gain for soda lime using:

Corrected soda lime wt gain	=	sample soda lime wt gain	-	blank soda lime wt gain
Y	=	L	-	С
g	=	g		g

The answer will be in grams of CO_2 produced. For use in the final equation, you'll need to convert this to milligrams:

 $----- g x 1000 mg/g = ----- mg CO_{2}$

Calculate the dry weight of the total soil sample (using soil weights from this form and moisture content from Part 1, step 5 on the Measuring Decomposition Using Soda Lime Data Form 1. Soil Moisture Content):

Dry wt = total soil wt - (moisture content x total soil wt)

Z = I - (moisture content x I)

 $\underline{\qquad \qquad } g = \underline{\qquad \qquad } g - (\underline{\qquad \qquad } x \underline{\qquad \qquad } g)$

This answer will be in grams of dry soil. For use in the final equation, you'll need to convert it to kilograms:

_____ g x 0.001 kg/g ₌ _____ kg dry soil

- 3. Calculate the rate of CO₂ production in milligrams CO₂ produced per day per kilogram of dry soil. Use your answers from the previous two steps in place of the Y and Z in this equation:
 - CO_2 production rate = $\frac{Y \text{ mg } CO_2 \text{ x } 1.69/\text{days incubated}}{Z \text{ kg dry soil}}$ = _____ mg $CO_2/\text{day/kg dry soil}$