MEASURING DECOMPOSITION USING TITRATION DATA FORM 1: SAMPLES

Complete this form for each soil sample.

Name(s)	Date
Soil sample ID number	
Soil sampling location	
Type of area sampled (e.g., forest, schoolyard)	
Date soil sample was collected	

Protocol 5, Part 2. Preparing Soil Samples

1. Calculate dry weight of soil.

Total soil weight (H-G)	=	g
Weight of container without lid and soil (H)	=	g
Weight of container without lid (G)	=	g

Use total soil weight and % soil moisture from Part 1, step 6 on the **Measuring Decomposition Using Soda Lime Data Form 1: Soil Moisture Content** to calculate dry weight of soil. Remember to use the fraction for moisture content (not multiplied by 100).

Dry wt (g) = total soil wt - (moisture content x total soil wt)

= _____ g

This answer will be in grams of dry soil. For use in the final equation, you'll need to convert it to kilograms:

Dry wt (kg) = dry wt (g) x 0.001 kg/g

_ ____ kg dry soil

Protocol 5, Part 3. Titration

Molarity of HCl used in titration _____

(This should be 1. If different, ask your teacher for help in altering the final CO_2 respiration equation.)

Milliliters HCl used to titrate blank (B) _____

(If you used more than one blank, determine the average and record it here.)

Milliliters HCl used to titrate sample (S)

CO, produced in milligrams = (B-S) x 22^*

- = (____ mL ____ mL) x 22 = _____ mg
- 4. Calculate the CO₂ production rate.

The CO_2 production rate is the rate of CO_2 produced in milligrams CO_2 per day per kilogram of dry soil. Use the kg dry soil from step 1, number of days incubation from step 2, and mg CO_2 from step 3 above.

CO₂ production rate = [(CO₂ produced in milligrams)/(# of days incubated)] (kilograms dry soil) = _____ (mg CO₂/ day) /kg dry soil

*You may wonder why there is a "22" in the equation. It is necessary to convert from milliliters HCl into milligrams CO₂ as shown in the following equation:

$$(\text{HCI}_{\text{blank}} - \text{HCI}_{\text{sample}}) \times 22 = (\text{HCI}_{\text{blank}} - \text{HCI}_{\text{sample}}) \times \frac{1 \text{ liter}}{1000 \text{ mL}} \times \frac{1 \text{ mol HCl}}{\text{ liter}}$$
$$\times \frac{44 \text{ g CO}_2}{\text{mol CO}_2} \times \frac{1 \text{ mol CO}_2}{2 \text{ mol HCl}} \times \frac{1000 \text{ mg}}{\text{g}}$$