PROTOCOL 2. PLOT SAMPLINGDENSITY AND PERCENT COVER

Sampling

Sometimes it is too time-consuming, expensive, or even impossible to collect data from your entire study area. Sampling allows us to gain information about a site without looking at every plant or animal. Sampling involves taking measurements on small plots that are representative of the larger study area and using the data to represent the entire study area. By locating quadrats using random or stratified sampling, you increase your chances of getting a representative sample. What might be the problem if you chose sampling locations without first setting up a sampling scheme (e.g., by choosing the first spot you encountered or by choosing sites that had lots of the plants you were interested in)?

Objective

To estimate population size or relative importance of invasive and other species in a study area.

Background

H ow do scientists measure the size of plant populations? Scientists could count every individual plant, but imaginehow long this would take in large areas with many plants. W hen conducting plant ecology research, scientists often select smaller sample plots inside the larger study area. T he scientists thoroughly study the plants in the sample plots and then use these results to make generalizations about the entire area.

F or plants that are large, relatively easy to count, and not too numerous (less than 100 individuals per m^{2}), scientists count each stem in the plot to determine density (number of plants per area). W hen the plants are small and numerous (e.g., clovers, grass, or moss), it is extremely difficult to count each individual stem. In these cases, scientists estimate the percent of the ground covered by the species. In any one plot, you can measure density for plants with stems that are easy to count and percent cover for plants that are too hard to count. H ow ever, you must use the same method for the same species for all plots and you can't compare species measured using different methods.

In this protocol, we have included instructions for measuring density and percent cover in $1 \mathrm{~m}^{2}$ plots. If plants are extremely dense so that it is difficult to count stems or estimate percent cover, you can decrease the size of the plots. F or example, you may want to use $0.5 \mathrm{~m}^{2}$ ($0.5 \mathrm{~m} \times 1.0 \mathrm{~m}$) or $0.25 \mathrm{~m}^{2}(0.5 \mathrm{~m} \times 0.5 \mathrm{~m})$ plots. If the plants are sparse and you are not getting a good sample, you can increase the size of the plots.

Prior to breaking into student groups to estimate density and percent cover, you should practice making these estimates as a larger class. T here are several tricks that you can useto make these measurements easier. For example, you can start at one end of a plot and use a stick to separate stems you have already counted from those you haven't yet counted. To estimate percent cover, you can practice using a square quadrat frame with 10 cm intervals marked off (see below). Percent cover can be difficult to estimate at first, and getting practice beforehand will make things go more smoothly in the field.

W hen you practice the protocols with other students, you will likely come up with several different questions about exactly how to sample the plants. M aking decisions about these details as a class will help standardizehow different student groups collect data. T his will allow you to combinedata from different plots to get averages for the entirestudy area. It al so will make it possible to compare results from different sites.

Prior to making measurements on plants, you will need to locate your study plots. T here aremany waysto locatesmall sample plots in a larger study area. U sing an accepted method to locate these small plots can help to avoid bias. F or example, imagine a research project on the side of a steep mountain. Getting to plots at the top of the mountain takes more effort than getting to plots closer to the bottom, so at the end of a long day of fieldw ork, researchers might- perhaps unk nowingly- select more plots near the bottom. To avoid this and other types of bias, scientists have developed several methods to locate plots in a larger study area.

R andom sampling is one way to locate plots. To randomly select plots, scientists first determine how many plots they want, and then use random numbers to locate them. For example, scientists may first walk a random number of steps along the edge of their study area. T hen they choose another random number and walk that many steps into the study area. T he sample plot is located at the final step (see F igure 2.1).

FIGURE 2.1.

Random and Stratified Sampling

Random plot selection

Stratified plot selection

Each of the study areas has 16 plots represented by the black dots.
The biggest drawback to random plot selection is the possibility that, by chance, all the plots will beclumped or located near each other. Selecting plots using stratified sampling is a way of avoiding clumping. W hen using stratified sampling, scientists randomly locate a starting point and then divide their study area into a certain number of equal boxes. T hey next locate a plot at the corner of each box.

A fter locating your sampling plots, you will need to build quadrat frames. T hen you will count stems and estimate percent cover of different species on your sampling plots.

PART 1. LOCATING SAMPLE PLOTS-RANDOM AND STRATIFIED SAMPLING

Random Sampling

Materials

Stakes and flagging
Random number table or stopwatch or phone book

Procedure

1. L ocate the corner of the study area in which you will sample (e.g., a w etland).
2. Orient yourself so that you will walk along the longest edge of your study area.
3. Choosea random number using one of themethods described below. If the edge of your study area is less than 99 paces, you will need a random number between 00 and 99 . If the number you choose is larger than the maximum number of steps you can take along theedge of your study area, choosethe next random number. F or example, if your study area is 60 paces long and you choose random number 71 , select the next number.
a. Random number table. L ocate a random number table, often located in ecology or biology laboratory textbooks. Pick any number on the page, and for each subsequent number you need, choose the next number below.
b. Stopwatch. U sing this method you only will be ableto generaterandom numbers with two digits. O btain a digital stopwatch that measures to the nearest one hundredth of a second. Press the start button, wait a while, and press the stop button. Your two-digit random number is determined by using the digits in the tenth and hundredth places.
c. Phone book. If you do not have access to a random number table or a stopwatch, you can use the white pages (not the pages that contain advertisements) of a phone book. Flip the book open, and choose a name at random. Y our random number is determined by choosing the last digits of the phone number. F or each subsequent random number you need, choose the next number below.
4. Beginning at your starting point and continuing al ong the edge of your study area, walk the number of steps indicated by your random number.
5. Turn 90 degrees towards the plot. Choose another random number (use the next number in the table or phone book, or use the stopwatch method again), and walk the number of steps indicated by this second number. You should be walking into your study area in a direction that is perpendicular to the edge of the plot. W alk in a straight line. Try not to veer to the right or left to avoid shrubs or wet spots.
6. The corner of your first sampling plot is located where your foot lands on the last step. Y ou may want to permanently mark the corners of your plot with stakes and flagging. A void trampling plants in the plots. Repeat steps 3-6 to locate additional plots.

Making Decisions

Whenever someone measures plants in the field, questions are bound to come up about how to conduct the measurements. Should I stretch out the plant when I am measuring its height or just measure it as is? What do we mean by "stem" when the plant branches part way up? Should I measure percent cover at ground level or as seen from above the plants?

The answers to these questions will vary, depending on why you are measuring something. Ask yourself why you are taking a certain measurement. Are you measuring percent cover to get an idea of the amount of bare soil surface that might be available for a seed to sprout? Or is percent cover important as a measure of how shaded smaller plants might be. Depending on your objectives, would you want to measure percent cover at ground level or higher up?

For some questions there may not be one good answer. However, regardless of the question, the class will need to come to a consensus so that all measurements are collected in the same way. The class should write down all these questions and the decisions that were made, so that next year's students will be able to continue the study in the same way. This will allow you to make comparisons from one year to another.

Making decisions like this is part of conducting research.

Stratified Sampling

Materials

Stakes and flagging
Map of site
Surveyor's tape (100 m or 50 m) or nonstretch string

Procedure

1. Obtain or make a map of your study site and determine the outside dimensions.
2. Decide how many sample plots you will need. Later on, you will divide the study area into a grid of equal-sized squares. Y ou will locate one sample plot in each square.
3. Choose a random number and walk that many steps to start the grid. N ext divide your study area into a grid of equal-sized squares, one for each sample plot. Y ou may want to first draw out the grid on a map of the site. T hen using a survey tape, nonstretch string, or pacing off the correct distances, mark the edges of the squares with stakes and flagging. A void trampling and disturbing the study area as much as possible.
4. L ocate a sample plot at the corner of each of the sections of your study area.

Observer Bias

If several different groups of students estimate density or percent cover of the same species on the same plot, do they get different results? You might want to try this in your class and see how close the results are for density and percent cover. Whenever

> someone measures plants in the field, there is bound to be some error due to differences in the way different researchers take their measurements. When several people are working on the same research project, they often train together so that their measurements are more standardized.

PART 2. BUILDING QUADRAT FRAMES

Materials (per student group)

$1 ⁄ 2$ in PVC tubing, elbows, and sleeves OR
M eter sticks, or other sticks 1 m in length and screws or nonstretch string

Procedure

1. A quadrat frame will mark theouter edges of your plot. You can build a square quadrat frame out of PVC tubing or meter sticks. One method involves fastening sections of PVC tubing using el bows. To make the quadrat frame easier to slide under vegetation, you can construct the two halves separately using PVC tubing and sleeves. Both halves are in the shape of a square " C ." U sing right-angle elbows, attach both ends of a 1 m piece of tubing to 0.5 m long pieces of tubing. Place sleeves at the end of the 0.5 m pieces so they can be joined in the field to form a square. A nother method used to construct quadrats istying 1 m long pieces of string between both ends of two meter sticks(Figure 2.2). T his method is best for short vegetation as the strings may get caught on taller plants. A nother method is to fasten meter sticks to each other using screws.
2. Regardless of the method used to construct the quadrats, make sure they can be taken apart or fol ded up for carrying. It is best to leave one corner of the quadrat unattached so you can unfold the quadrat and slide it under the vegetation into place. If all four sides arefixed, you must place thequadrat over the vegetation, which can bedifficult with tall plants such as purple loosestrife.
3. M ark 10 cm intervals on your quadrat frame in black and the 50 cm point in red to help you estimate percent cover. For example, by marking off every 10 cm , you can visualize a square $10 \mathrm{~cm} \times 10 \mathrm{~cm}$, which is the same as 1% cover for a $1 \mathrm{~m}^{2}$ plot. A rectanglethat is $50 \mathrm{~cm} \times 10 \mathrm{~cm}$ is 5% cover, a square $50 \mathrm{~cm} \times 50 \mathrm{~cm}$ is 25% cover, and so on.

FIGURE 2.2
Quadrat Construction

Cut string into two 130 cm lengths. Firmly tie string to the holes in the ends of the meter sticks. Be sure your final string length is 1 m . Leave one string end untied so you can place the quadrat around tall vegetation.

PART 3. PLOT SAMPLING

Materials (per student group)

Quadrat frame
Copies of Plot Sampling D ata Form 1: Density and Percent Cover (onefor each plot) (p. 78)
Copy of Plot Sampling D ata Form 2: Summary (p. 79)

Procedure

1. Decide how many plots (also called quadrats) you will sample. A rule of thumb is either a minimum of ten plots or one $1 \mathrm{~m}^{2}$ plot per $100 \mathrm{~m}^{2}$. Divide into groups of 3-4 students for $1 \mathrm{~m}^{2}$ plots. E ach student group should be responsiblefor one or more plots. Students in each group should take on roles as data gatherers and data recorders.
2. L ocate the sampling plot using either the random or stratified selection methods described above.
3. Lay out the $1 \mathrm{~m}^{2}$ quadrat on the ground at the first sampling point you have chosen. Be careful not to step in the quadrat while laying it out.
4. F or species that areeasy to count and that are tall, count the number of stems in the plot. Record this number separately for each species on the Plot Sampling Data Form 1: D ensity and Percent Cover. If the stems are numerous, you can avoid double counting by starting at one corner of the plot and moving systematically across the plot. Y ou also can hold or mark stems you have counted, or place a plastic wand or thin stick between the counted and uncounted stems.
5. If the species is very numerous and not too tall, estimate what percent of the area of the plot it is covering (its percent cover), rather than count individual stems. Record the percent cover separately for each species on the Plot Sampling D ata Form 1: Density and Percent Cover. F or any one species, be sure to use the same method (density or percent cover) on all plots so you can make comparisons. Y ou can use percent cover for smaller species and density for larger species in the same plot but you will not be ableto compare species that are measured using different methods.
6. Repeat steps $2-5$ for each plot you are responsible for sampling.
7. If you encounter species you cannot identify, (a) describe the species (e.g., 1 m tall, purple flowers), (b) collect a sample from outside your plots, (c) try to identify the species using identification keys or by asking experts, and (d) press the specimen for use as reference for future surveys.

DATA ANALYSIS AND INTERPRETATION

You can use the data from your plot surveys to make generalizations about density and percent cover in the larger study area. To do this, you will need to compile the results for all the plots in a particular area. You can determine the average density or percent cover for each of the species you measured for all your plots.

A fter gathering together all the plot sampling data forms, calculate the average density or percent cover for each species found in your large study area using the formula below.
(Y ou may substitute percent cover for density where appropriate but don't mix cover and density.)

Average species density $=\frac{(\text { density in plot } 1)+(\text { density in plot } 2)+(\text { density in plot } X)}{\text { total number of plots }}$

F or example, consider a series of 5 plot surveys conducted in a schoolyard. Purple loosestrife was found in 4 of the plots.

Plot \#	Species	Density (\#/m²)
1	Loosestrife	85 stems $/ \mathrm{m}^{2}$
2	Loosestrife	53 stems $/ \mathrm{m}^{2}$
3	Loosestrife	64 stems $/ \mathrm{m}^{2}$
4	Loosestrife	33 stems $/ \mathrm{m}^{2}$
5	Loosestrife	0 stems $/ \mathrm{m}^{2}$

Average species density $=\frac{85+53+64+33+0}{5}=47$ stems $/ \mathrm{m}^{2}$

On the Plot Sampling D ata F orm 2: Summary, record the average density or percent cover for each of the species you found in your study area. Y ou can use the average density to compare different species, to compare the same species from several different sites, and/ or to compare sites where control measures have and have not been implemented. Y ou can use average percent cover in the same ways. H owever, you cannot compare species measured using density with species measured using percent cover.

PLOT SAMPLING DATA FORM 1: DENSITY AND PERCENT COVER

Complete one form for each plot.
Name(s) \qquad Date \qquad
Description of study area (e.g., wetland) \qquad
\qquad
\qquad
Plot ID number/label \qquad
Description of sample plot (e.g., standing water, shady) \qquad
\qquad
\qquad
Method used (density, percent cover, or both) \qquad
\qquad

Species name (or description)	Density (\# of individuals in plot)	Percent cover (\% of plot covered by species)

*If you don't know the name of the species, you can describe it and give it a name. You may want to take a sample of the species to later determine its name by asking an expert or using a field guide.

PLOT SAMPLING DATA FORM 2: SUMMARY

Use one form to compile the results from all individual plot surveys for each study area (e.g., schoolyard or wetland).

Class \qquad Teacher \qquad Date \qquad
Description of study area (e.g., wetland) \qquad
\qquad
\qquad
Number of plots surveyed \qquad

Determine the average density or percent cover for each species using the formula in Data Analysis and Interpretation (p. 77).

Species name (or description)	Average density	Average percent cover

PLOT SAMPLING DATA FORM 2: SUMMARY (continued)

Draw a bar graph showing the average density or percent cover of the different species.

PLOT SAMPLING: QUESTIONS

Name \qquad Date \qquad
(Please use complete sentences.)

1. Did you find any species that were present in all plots or had very high densities? Give some reasons that might explain this.
2. Did you find any species that were not present in all plots or had very low densities? Give some reasons that might explain this.
3. How did the density (or percent cover) of the invasive species compare with the other species in the study area?

PLOT SAMPLING: QUESTIONS (continued)

4. Do you think the combined results of all your plot surveys accurately represent the larger study area? Please explain. What might be some problems with the data you collected?
5. If you were to do your sampling again, what things might you change? Why might you make these changes?
6. Do you think plot sampling is a good way to study large areas? Why or why not? Explain.
